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Abstract Pseudospectral methods are frequently used in the horizontal directions in
large-eddy simulation of atmospheric flows. However, the same approach often creates
unphysical oscillations for scalar fields if there are horizontal heterogeneities in the sources
and/or sinks, as is usual in air pollution problems. A hybrid approach is developed to combine
the use of pseudospectral representation of the velocity field and bounded finite-volumes for
the scalar concentration. An interpolation scheme that yields a divergence-free interpolated
velocity field is derived and implemented, and its importance is illustrated by two sample
applications.

Keywords Conservative velocity interpolation - Divergence free - Finite volumes -
Large-eddy simulation - Passive scalars

1 Introduction

Spectral methods have been extensively used in large-eddy simulation (LES) and direct
numerical simulation (DNS) of turbulent homogeneous flows. The high accuracy coupled
with variance conserving properties of spectral methods are major advantages over other
discretization methods (Canuto et al. 1988). A common approach for LES of the atmospheric
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boundary layer (ABL) introduced by Moeng (1984) is to combine pseudospectral
representation in the horizontal directions and second-order centred finite-differences in the
vertical non-homogeneous direction. This combination takes advantage of spectral accuracy
in the homogeneous directions and allows flexibility for boundary conditions in the vertical
direction and is widely used in a variety of ABL applications (e.g. Khanna and Brasseur
1997; Albertson and Parlange 1999; Kosovic and Curry 2000; Kumar et al. 2006; Basu et al.
2007; Mao et al. 2007; Yue et al. 2007).

In many cases, such as air pollution, one is also interested in the turbulent transport of
scalar quantities. It is often the case that, although the flow is horizontally homogeneous,
the scalar sources are not. If spectral representation is also applied to the scalar conservation
equation, unphysical solutions such as negative concentrations often develop. To avoid these
problems, the usual approach is to use bounded schemes based on finite-difference or finite-
volume discretizations for the velocity and scalar equations (e.g. Nieuwstadt and de Valk
1987; Xie et al. 2004). Another option, to be developed here, is a hybrid approach where the
momentum equations are discretized using the spectral method and the scalar conservation
equation is solved on a finite volume grid. The idea is to combine the high accuracy and
kinetic energy conservation properties of spectral representation for the velocity field with
the physically motivated bounded properties for the scalar field (preserving high accuracy
for the velocity field is important given the large impact of advection on the evolution of the
scalar field).

A critical component of coupling the two different discretization methods is the interpo-
lation of the divergence-free velocity field to the finite-volume surfaces. It is essential that
the interpolated velocity field preserves the divergence-free character locally on the new grid
to high precision (Carey et al. 2001).

There are several methods documented in the literature regarding interpolation
of divergence-free vector fields. In Carey et al. (2001), a finite-element solution of the velocity
field is coupled with a coarser finite-volume water quality model. They proposed a solution
based on Lagrangian multipliers to enforce the local divergence-free constraint on the finite-
volume grid. Their approach is formulated as a global saddle-point optimization for the inter-
polated field. Similar problems are also encountered in adaptive mesh refinement schemes
for magnetohydrodynamics where the problem is usually solved by constructing divergence-
free interpolation formulae (Balsara 2001; Li and Li 2004). Another approach proposed by
Bochev and Shashnov (2005) for deforming (moving) finite-element grids is based on recon-
structing a vector potential associated with the velocity field and then interpolation of this
potential.

In this paper we propose a new interpolation scheme to couple a spectral representation of
the velocity field with a finite-volume solution to the advection—diffusion equation. Unique to
this problem is the fact that on the original grid the divergence-free condition is enforced based
on the nonlocal spectral derivatives while on the new target grid the interpolated velocity is
required to satisfy the same constraint in a local discretization. The method takes advantage
of specific characteristics of both grids, yielding a simple and efficient algorithm without
the requirement of Lagrangian multipliers or vector potential reconstruction. Although the
method is specific to this original/target grid choice, this is a combination that may have wide
applications in fluid dynamics.

As an example, the new method is applied to a LES of the neutrally buoyant atmospheric
boundary layer. Simulations are carried out using the proposed conservative interpolation
scheme, and results are compared with trigonometric interpolation. A brief description of the
numerical code that motivates the present development is provided in Sect. 2 and the new inter-
polation scheme is presented in Sect. 3. Results and conclusions are presented in Sects. 4 and 5.

@ Springer



A Hybrid Spectral/Finite-Volume Algorithm 475

2 LES Code Description

The numerical discretization used herein follows the approach used by Moeng (1984) and
combines a pseudospectral representation in the horizontal directions and second-order cen-
tred finite differences in the vertical. The vertical component of the velocity field w is placed
on a staggered grid as shown in Fig. la. The second-order Adams-Bashforth scheme is
used for time advancement, and the filtered momentum equations are solved in a rotational
form with a constant mean streamwise pressure gradient forcing. The flow is assumed to be
incompressible and molecular viscosity is neglected due to the high Reynolds number. The
subgrid-scale (SGS) stress tensor is modelled using a Smagorinsky-type model (Smagorinsky
1963), where the coefficient is determined using the Lagrangian-averaged scale-dependent
dynamic approach of Bou-Zeid et al. (2005). Stresses are imposed at the bottom boundary
based on a local application of the logarithmic law as described in Bou-Zeid et al. (2005).
More details on the solution of the velocity field can be found in Albertson and Parlange
(1999).

The same numerical model used here has been used by Tseng et al. (2006) to model pol-
lutant dispersal from a point source in Baltimore city, U.S.A. However, Tseng et al. (2006)
also used a pseudospectral representation for the passive scalar field and, in order to avoid
negative concentrations due to the Gibbs phenomenon, the turbulent diffusivity had to be
increased by a factor of 20. To further illustrate the problem, we use a pseudospectral repre-
sentation to simulate the dispersal of a passive scalar from a point source in the neutral ABL.
The approach is similar to the one used by Tseng et al. (2006), except that the standard value
for the Schmidt number (Sc¢ = 0.4) is adopted here. An instantaneous xz-cut of the concen-
tration field and its time-averaged counterpart are shown in Fig. 2. Clear spots of negative
concentration can be observed in both figures. Note that the Gibbs phenomenon also induces
large unphysical concentrations upwind from the source location.

In order to avoid problems such as those illustrated in Fig. 2, we couple the pseudospectral
solution for the velocity field with a finite-volume discretization for the advection—diffusion
equation. The finite-volume grid is placed in such a way that the centre of the volume
where the concentration field C; ; x is stored is located at the velocity nodes. The arrange-
ment, as well as the location where each velocity component is required for the evolution
of the scalar field, is shown in Fig. 1b. For clarity, velocity components on the spectral grid
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Fig.1 Discrete velocity locations (a) in the pseudospectral representation and (b) needed for the finite-volume
discretization
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Fig. 2 xz-cut of simulation of a point-source emission using spectral representation: (a) instantaneous con-
centration and (b) time-averaged concentration over 2.7 X 104 steps (3h). The cross indicates the location of
the source

will be represented by lower case (u, v, w) and their interpolated counterpart on the finite-
volume faces will be represented by upper case (U, V, W). As can be seen in the figure,
due to the vertical staggered grid, no interpolation for the vertical component is required.
For the horizontal directions trigonometric (exact spectral) interpolation and the conserva-
tive interpolation proposed in the next section are implemented. The SGS term in the filtered
advection—diffusion equation is modelled using a flux—gradient relation where the eddy diffu-
sivity is obtained by dividing the Lagrangian-averaged scale-dependent eddy viscosity (vggy)
by a constant Schmidt number, as is usual practice in simulations of the atmospheric boundary
layer (e.g. Andren et al. 1994). The advection term is computed using the bounded third-order
upwind interpolation scheme SMART (Gaskell and Lau 1988). The implementation follows
the method suggested by Waterson and Deconinck (2007).

3 Conservative Interpolation

The main motivation for the proposed interpolation scheme is the fact that in a spectral
representation conservation of mass is enforced using the spectral (nonlocal) derivatives. In
general, the velocity field interpolated to the surfaces of the finite volumes will not satisfy
the continuity equation. In other words, if the velocities (U, V, W) are obtained by linear or
trigonometric interpolation of (u, v, w), the conservation of mass on the finite-volume grid

Wiv1y2,jk — Uiz1)2,j0) AyAz
+ (Vijx126 — Vi j—172,0) Ax Az
+ Wi jk+12 — Wi jk—1/2)AxAy =0 (D

will, in fact, not be satisfied. It is well known that this has important consequences for the
evolution of the scalar equation, as will also be illustrated in the next section. For now, we
propose an interpolation scheme where Eq. 1 is exactly satisfied.
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It is important to note that continuity is enforced on the spectral derivatives. The solution
to the problem can be simply obtained if: (i) the spectral derivatives are used instead of the
spectral velocity field (u, v, w), and (ii) the derivatives are integrated using a scheme consis-
tent with the finite-volume discretization. The procedure is illustrated for the code described
in the previous section, in which only the horizontal components need to be interpolated.
Generalization to fully three-dimensional spectral codes is trivial.

The solution proposed is to calculate U and V from the spectral derivatives (du/dx)*P¢
and (dv/dy)*P¢“ instead of using u and v. Both derivatives are also known at the centre of
the finite volumes and they satisfy continuity exactly:

(mt)spec. N (av)spec. N Wi jk1/2 — Wi, jk—1/2 —0 (2)
ox ij.k 3y ij.k AZ

If we use a second-order centred discretization (which is consistent with the finite volume
discretization), then the velocity field can be obtained from:

Uit1/2,jk = Ui-1/2,jk _ (314)”7“', 3)
Ax dx ik

Vij+2k = Vijj-1/2k _ (31))”’“" @
Ay /i jk

It is obvious that if the velocity field (U, V) is determined from the above equations, the
finite-volume conservation of mass given by Eq. 1 is exactly satisfied.

However, Eq. 3 for each element (i, j, k) has two unknowns and additional information is
required to completely determine the solution. Since the face velocity obtained has to be the
same for both elements sharing the common face, the solution for each pair of neighbouring
elements is coupled. If Eq. 3 is written for all elements in the two-dimensional horizontal
plane, the solution can be arranged in N, decoupled systems of N, equations for the U
elements, each system corresponding to one line along the x direction (the last equation is
obtained taking into account the periodicity of the velocity field). In the same way, one obtains
Ny systems with N, equations for the V' elements. However, all these systems are undeter-
mined, since the equation from the periodicity is a linear combination of two other equations
(obviously, one cannot fully determine the velocity field by imposing only the derivatives
everywhere). One more equation has to be added. We choose to impose the average velocity
along the line, by averaging the original field (u, v) along the same line. As an example, the
final system of equations for the (j, k) line of U is given by:

(Ax)(Qu/dx)5%
-1 1 0... 00 Ui—1y2.j.k (Ax)(au/ax)spjec.
0-1 1... 0 O Us—12,jk %Jeck
0 0-1... 0 O Us—12,jk _ (Ax)(au/ax)é{?j,k‘ 5)
0O 0 O0...—-1 1 UNx—1-1/2,jk Ax) (D 8 spec.
1 1 1... 1 1 Unx—1,2,jk (Ax)(@u/ X)nx_l’j'k
> k)

and similarly for V; ;1,2 k.

The solution for the system Ax = b above can be implemented in an efficient algorithm
by noting that: (i) all the matrices for each velocity component are the same, and (ii) the
structure of each matrix is very simple and its inverse can be easily determined. The inverse
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of the matrix A depends only on N, and it was evaluated for several values of N. The results
were observed to be of the form:

T1—=N)Q2=N)B=N)...(N—1—-N) 1
12=N)B-N)...(N—1—=N) 1

1

1

] 1 2B3=N)...(N=1—=N)
A‘1=N 1 2 3...(N—1—=N) 6)
T2 3L WN—1=-N) 1
1 2 3... (N=1 1

Multiplication by A yields the identity matrix as can be seen by inspection. The proposed
scheme is then reduced to simply calculating the spectral derivatives and assembling the vec-
tors on the right-hand side of Eq. 5. The required velocity components are then obtained by
multiplying the vectors by the matrix A~! given above. Note that each velocity component
is determined independently from the others (i.e. in the interpolation algorithm the velocity
components are decoupled). The final algorithm is fast and the number of operations required
for a simulation with N;,; = Ny x Ny x N, can be estimated as follows: for a given velocity
component, say U, each line along that velocity component’s direction (in this case x) will
require one matrix-vector multiplication (order of N f operations). The interpolation of U will
require Ny, N, matrix-vector multiplications and the total number of operations required is of
order N)%N),NZ. If Ny = Ny = N, = N, the number of operations required for N;o; = N 3

points is of order N* and the total number of operations required is of order N ,40/13 (the fastest
method would be linear interpolation which, in this case, would require N,,; operations).

4 Sample Results

Both trigonometric and conservative interpolations were implemented in the LES code
described in Sect. 2. In both cases the velocity field is calculated using a pseudospectral
representation and the passive scalar field is calculated on a finite-volume grid (the only
difference being the interpolation scheme used to obtain the velocity field needed to evolve
the advection—diffusion discretized equation). As noted by Yeung and Pope (1988), trigo-
nometric interpolations can be considered “exact” on the truncated basis. The comparisons
presented here are based on 643 simulations with domain size 27 H x 27t H x H and imposed
pressure gradient (1/p)|Vp| = uﬁ /H, where u, is the friction velocity. The velocity field is
evolved until statistical steady-state is reached (9 x 10* timesteps) and then the scalar field is
“turned-on” and integrated for another 2 x 10° timesteps. In Fig. 3 the two interpolations are
compared for the instantaneous streamwise component of velocity, one at the first vertical
level and the other halfway between the lower boundary and the centre of the domain (N, /4).
The two interpolation schemes yield similar results, the differences being larger closer to the
wall, where the velocity field is less smooth.

Two sets of simulations are carried out with each interpolation scheme in order to demon-
strate the importance of the conservative interpolation. The first set is carried with zero scalar
fluxes at the top and bottom boundaries and initial uniform concentration C(x, y, z,t = 0) =
Cy. In this case, with no scalar gradients, sources or sinks, the analytical solution if the flow
field is divergence-free is C(x, y, z, t) = Cy. Figure 4 shows a xz plane of the scalar concen-
tration C/Cp after 3 x 103 timesteps (1,200 s) using the trigonometric interpolation. It is clear
that the non-conservativeness of the finite-volume discrete velocity field introduces spurious
oscillations. As expected, the problem is worse closer to the bottom boundary. Although

@ Springer



A Hybrid Spectral/Finite-Volume Algorithm 479

18
16
E; 14
=12
2 q
5 10
8
6 1 1 1
0 /2 T 3n/2 2n
x/H
2
=
2
=]
18 1 1 1
0 /2 T 3n/2 2n
x/H

Fig. 3 Comparison between trigonometric and conservative interpolations for (a) first vertical grid point
and (b) level N; /4. Original data (filled circles), trigonometric interpolation (open squares) and conservative
interpolation (times)
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Fig. 4 Scalar concentration xz-cut of simulation using trigonometric interpolation, illustrating unphysical
fluctuations developing due to artificial divergence

the volume integral of C is conserved, the spurious oscillations have a large impact on the
second-order moments, including variance and scalar fluxes. The time evolution of the scalar
variances are shown in Fig. 5 for both interpolations at three different distances from the
wall.

The second set of simulations has zero initial concentration (C(x, y, z,¢ = 0) = 0) and
a constant surface scalar flux imposed ¢g (again with zero scalar flux at the top). This case
mimics the typical conditions assumed in the derivation of the Monin—Obukhov Similarity
(MOS), which is a standard test for atmospheric boundary-layer simulations. Although there
is no statistical steady state for the concentration field with these boundary conditions, the
MOS theory predicts a logarithmic law for the normalized concentration difference (e.g.
Monin 1970; Hogstrom 1988)

(C(z)—Cr):_ﬁlog(i), @

Cy K Zr
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Fig. 5 Scalar variance evolution using trigonometric interpolation for plane z = dz/2 (solid line), z = H /4
(dashed line) and z = H /2 (dotted line), and using conservative interpolation for any vertical plane (dot-dashed
lines at 02 /C% = 0)
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Fig. 6 Scalar vertical profile using (a) trigonometric interpolation and (b) conservative interpolation. Theo-
retical prediction (thin dashed line), LES time evolution averaged between 2.4 x 104-4.8 x 104 (solid line),
7.2 % 10%-9.6 x 10* (dashed line), 1.2 x 103-1.44 x 103 (dotted line) and 1.68 x 105-1.92 x 103 (dot-dashed
line)

where brackets represent an ensemble (or time) average, C, = C(z,), 2, is a reference level
taken here as the first vertical grid point, Cx = ¢o/u. is a scale for the scalar concentration,
uy is the friction velocity.

The evolution of Eq. 7 is shown in Fig. 6 for the simulations using the two interpolation
schemes. The time averages are performed over 2.4 x 10* steps (9,600s) and are shown for
several intervals between 2.4 x 10% and 2 x 10° timesteps. It is very clear that not only the
case with trigonometric interpolation does not agree with Eq. 7, but also a steady state is
never reached despite the very long time integration performed. On the other hand, if the
conservative interpolation is used the agreement is very good up to z/H = 0.1 (note that
MOS theory is only valid in the lowest 10% of the boundary layer).

The consequences of using non-conservative interpolations are even worse for the second-
order moments. The time evolution of the scalar variance profile is shown in Fig. 7. Clearly
the variance increases monotonically in time reaching unphysically large values close to the
ground surface if trigonometric interpolation is used. Results are improved if the conserva-
tive interpolation is used and results agree well with several other LES codes compared by
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Fig. 8 Scalar vertical flux profile (see Fig. 6 for legend)

Andren et al. (1994). The vertical fluxes of the scalar field are presented in Fig. 8. Note that the
trigonometric interpolation causes errors close to the surface to the point that the net resolved
flux becomes negative (i.e. downwards) even though the vertical gradient is negative. Again
no statistical steady state is reached. If the conservative interpolation is used, a steady state
is reached, again in good agreement with results presented by Andren et al. (1994).

The vertical profiles of the SGS scalar diffusivity are shown in Fig. 9. It is clear that
in both cases the modelled scalar diffusivity is very similar and cannot be the cause of the
discrepancies shown above.

It is important to emphasize that in both simulations described above, a pseudospectral
representation of the scalar field would yield good results. In the first case there are no sources
and in the second the source is homogeneous in the horizontal directions. The main point of
these examples is to illustrate the importance of enforcing the divergence-free conditions on
the interpolated grid if a hybrid approach is to be used. Finally, to confirm the advantage of
using a bounded discretization for the passive scalar as opposed to a pseudospectral repre-
sentation in the case of isolated sources, the same simulation shown in Fig. 2 is now shown in
Fig. 10 using the SMART discretization with the proposed interpolation. The general trends
are similar but regions of low concentration that in Fig. 2 became negative and unphysical
due to Gibbs oscillations, remain positive in Fig. 10 due to the SMART discretization. The
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Fig. 9 Scalar SGS diffusivity profile, defined as K csgs = vsgs/Sc (see Fig. 6 for legend)
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Fig. 10 xz-cut of simulation of a point-source emission using SMART discretization and the conservative
interpolation: (a) instantaneous concentration and (b) time-averaged concentration over 2.7 x 104 steps (3 h).
The cross indicates the location of the source

time-average concentration plume also displays a much better behaviour with no oscillations
upstream of the source.

5 Conclusions

In this note we illustrate the well-known drawbacks of using a pseudospectral representation
for passive scalars when the sources are localized in space. In order to maintain the advan-
tages of the high accuracy of the pseudospectral approach for the velocity field, a hybrid
approach that combines a pseudospectral solution for the velocity field and a finite volume
discretization for the passive scalar is proposed. Results presented here illustrate the impor-
tance of using a velocity field that obeys the divergence-free condition with high precision
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when interpolated onto the finite-volume grid. Typical interpolation schemes do not satisfy
this condition, with negative consequences. A new conservative interpolation scheme has
been proposed and the results are shown to be in agreement with theoretical predictions. The
proposed method can be implemented efficiently and has the advantage of avoiding coupling
between different velocity components (note that any attempt to use trigonometric interpo-
lation and then correct the velocity field to satisfy continuity would yield a large system of
equations coupling all velocity components). Although the illustrative example presented
here is for a two-dimensional interpolation, extension to the three-dimensional case (e.g.
where (dw/dz)*P¢“- would be known from a spectral representation) is straightforward.
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